4.4 Article

A hybrid model for intensively managed Douglas-fir plantations in the Pacific Northwest, USA

期刊

EUROPEAN JOURNAL OF FOREST RESEARCH
卷 129, 期 3, 页码 325-338

出版社

SPRINGER
DOI: 10.1007/s10342-009-0339-6

关键词

Hybrid model; Thinning; Fertilization; Growth and yield; Oregon; Washington; Leaf area index; Soil temperature; Soil moisture; Soil nitrogen mineralization; Net primary production

类别

资金

  1. USDA

向作者/读者索取更多资源

Recent advances in traditional forest growth models have been achieved by linking growth predictions to key ecophysiological processes in a hybrid approach that combines the strengths of both empirical and process-based models. A hybrid model was constructed for intensively managed Douglas-fir plantations in the Pacific Northwest, USA, by embedding components representing fundamental physiological processes and detailed tree allometrics into an empirical growth model for projecting individual tree and stand development. The simulated processes operated at a variety of scales ranging from individual branches to trees and stands. The canopy structure submodel improved predictions of leaf area index at the stand level when compared to allometric and other empirical approaches (reducing mean square error by 30-42%). In addition, the hybrid model achieved accuracy in short-term volume growth prediction comparable to an empirical model. Biases in 4-year stand growth predictions from the hybrid model were similar to those from the empirical model under thinning, fertilization, and the combination of these treatments; however, volume growth predictions in unmanaged plantations averaged approximately 36% less bias. These improvements were attributed to detailed information on crown structure (i.e. size, location, and foliage mass of primary branches), simple representation of key physiological processes, and improved site characterization. Soil moisture, temperature, and nitrogen mineralization predicted by the hybrid model also agreed closely with observed values from several previous studies. Overall, the model framework will be helpful for future analyses as it can lend insight into the influence of weather and site edaphic factors on growth, help identify mechanisms of response to silvicultural treatments, and facilitate the design of sound management regimes for Douglas-fir plantations across the Pacific Northwest region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据