4.6 Article

Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL

期刊

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION
卷 42, 期 5, 页码 487-495

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2362.2011.02604.x

关键词

Cholesterol glucose; HDL; HDL function; lipoproteins; type 2 diabetes mellitus

资金

  1. Dutch Diabetes Research Foundation
  2. Netherlands Organization for Scientific Research (VIDI) [917-56-358]
  3. Groningen Expert Center for Kids with Obesity
  4. Top Institute Food and Nutrition

向作者/读者索取更多资源

Background Type 2 diabetes mellitus increases the risk of atherosclerotic cardiovascular disease. Antioxidative properties of high density lipoprotein (HDL) are important for atheroprotection. This study investigated whether the antioxidative functionality of HDL is altered in type 2 diabetes mellitus and aimed to identify potential determinants of this parameter. Materials and methods In a cross-sectional study, we investigated 74 patients with type 2 diabetes and 75 control subjects. Antioxidative properties of HDL were measured and expressed as either (i) HDL antioxidative capacity or (ii) HDL antioxidation index after multiplying HDL antioxidative capacity results with individual plasma HDL cholesterol concentrations. Lecithin:cholesterol acyltransferase (LCAT) and paraoxonase-1 (PON-1) activities were determined. Results HDL antioxidative capacity was similar in patients with diabetes and controls, while the HDL antioxidation index was decreased in patients with diabetes (P = 0.005) owing to lower plasma HDL cholesterol (P < 0.001). LCAT activity was higher and PON-1 activity lower in type 2 diabetes mellitus (each P < 0.001). In the combined subjects, HDL antioxidative capacity was inversely related to LCAT activity (P < 0.01). The HDL antioxidation index correlated negatively with blood glucose (P < 0.001), HbA1c and LCAT activity (each P < 0.01), and positively with PON-1 activity (P < 0.01). Multiple linear regression analysis demonstrated that high LCAT activity was associated with both decreased HDL antioxidation capacity (P < 0.05) and index (P < 0.001) independent of diabetes status, glycaemic control and PON-1. Conclusions Overall, the antioxidative functionality of HDL is impaired in type 2 diabetes mellitus mostly because of lower HDL cholesterol. Hyperglycaemia, increased LCAT activity and lower PON-1 activity likely contribute to impaired antioxidative functionality of HDL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据