4.3 Article

Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches

期刊

EUROPEAN JOURNAL OF APPLIED MATHEMATICS
卷 19, 期 -, 页码 61-86

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0956792507007280

关键词

-

资金

  1. NERC [NE/E003206/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [GR/S50052/01] Funding Source: researchfish
  3. Natural Environment Research Council [NE/E003206/1] Funding Source: researchfish

向作者/读者索取更多资源

Dense, dry granular avalanches are very efficient at sorting the larger particles towards the free surface of the flow, and finer grains towards the base, through the combined processes of kinetic sieving and squeeze expulsion. This generates an inversely graded particle-size distribution, which is fundamental to a variety of pattern formation mechanisms, as well as subtle size-mobility feedback effects, leading to the formation of coarse-grained lateral levees that create channels in geophysical flows, enhancing their run-out. In this paper we investigate some of the properties of a recent model [Gray, J. M. N. T. & Thornton, A. R. (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. 461, 1447-1473]; [Thornton, A. R., Gray, J. M. N. T. & Hogg, A. J. (2006) A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid. Mech. 550, 1-25] for the segregation of particles of two sizes but the same density in a shear flow typical of shallow avalanches. The model is a scalar conservation law in space and time, for the volume fraction of smaller particles, with non-constant coefficients depending on depth within the avalanche. It is proved that for steady flow from an inlet, complete segregation occurs beyond a certain finite distance down the slope, no matter what the mixture at the inlet. In time-dependent flow, dynamic shock waves can develop; they are interfaces separating different mixes of particles. Shock waves are shown to be stable if and only if there is a greater concentration of large particles above the interface than below. Constructions with shocks and rarefaction waves are demonstrated on a pair of physically relevant initial boundary value problems, in which a region of all small particles is penetrated from the inlet by either a uniform mixture of particles or by a layer of small particles over a layer of large particles. In both cases, and under a linear shear flow, solutions are constructed for all time and shown to have similar structure for all choices of parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据