4.1 Article Proceedings Paper

QCM-D fingerprinting of membrane-active peptides

期刊

出版社

SPRINGER
DOI: 10.1007/s00249-010-0652-5

关键词

Antimicrobial peptide; Quartz crystal microbalance; Frequency-dissipation plot; Membrane pore; Membrane disruption

向作者/读者索取更多资源

The increasing prevalence of antibiotic-resistant bacteria is becoming a public health crisis. Antimicrobial peptides (AMPs) are a promising solution, because bacterial resistance is less likely. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a versatile and valuable technique for investigation of these peptides. This article looks at the different approaches to the interpretation of QCM-D data, showing how to extract the maximum information from the data. Five AMPs of diverse charge, length and activity are used as case studies: caerin 1.1 wild-type, two caerin 1.1 mutants (Gly15Gly19-caerin 1.1 and Ala15Ala19-caerin 1.1), aurein 1.2 and oncocin. The interaction between the AMP and a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane is analysed inter alia using frequency-dissipation plots (a dagger f-a dagger D plots) to ascertain the mechanism of action of the AMP. The a dagger f-a dagger D plot can then be used to provide a fingerprint for the AMP-membrane interaction. Building up a database of these fingerprints for all known AMPs will enable the relationship between AMP structure and membrane activity to be better understood, hopefully leading to the future development of antibiotics without bacterial resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据