4.7 Article

A graph theory approach to identify resonant and non-resonant transmission paths in statistical modal energy distribution analysis

期刊

JOURNAL OF SOUND AND VIBRATION
卷 350, 期 -, 页码 91-110

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2015.04.001

关键词

-

资金

  1. Labex CeLyA of Universite de Lyon [ANR-10-LABX-0060/ANR-11-IDEX-0007]
  2. Generalitat de Catalunya (SUR/ECO) [2014FI_B2 00141]

向作者/读者索取更多资源

Statistical modal energy distribution analysis (SmEdA) extends classical statistical energy analysis (SEA) to the mid frequency range by establishing power balance equations between modes in different subsystems. This circumvents the SEA requirement of modal energy equipartition and enables applying SmEdA to the cases of low modal overlap, locally excited subsystems and to deal with complex heterogeneous subsystems as well. Yet, widening the range of application of SEA is done at a price with large models because the number of modes per subsystem can become considerable when the frequency increases. Therefore, it would be worthwhile to have at one's disposal tools for a quick identification and ranking of the resonant and non-resonant paths involved in modal energy transmission between subsystems It will be shown that previously developed graph theory algorithms for transmission path analysis (TPA) in SEA can be adapted to SmEdA and prove useful for that purpose. The case of airborne transmission between two cavities separated apart by homogeneous and ribbed plates will be first addressed to illustrate the potential of the graph approach. A more complex case representing transmission between non-contiguous cavities in a shipbuilding structure will be also presented. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据