4.5 Article

Screening for resistance to clover rot (Sclerotinia spp.) among a diverse collection of red clover populations (Trifolium pratense L.)

期刊

EUPHYTICA
卷 194, 期 3, 页码 371-382

出版社

SPRINGER
DOI: 10.1007/s10681-013-0949-4

关键词

Resistance; Ploidy; Red clover; Sclerotinia spp.; Trifolium pratense

向作者/读者索取更多资源

Red clover (Trifolium pratense) is an important perennial forage crop that is widely cultivated in Europe. Clover rot remains a major disease in red clover, but resistance breeding is hampered by the lack of available sources of resistance. Moreover, little is known about the factors that influence clover rot resistance. In this paper we evaluated the variation in clover rot susceptibility among a diverse collection of 113 red clover accessions, with the aim of identifying more resistant accessions. Clover rot susceptibility was assessed with a high throughput bio-test on young plants. We found significant variation in clover rot susceptibility, within and among accessions. 'Tedi', 'Maro' and 'No 292' were the most resistant accessions. Fifteen diploid accessions were more susceptible than the average accession with the cultivar 'Nemaro' being the most susceptible. Clover rot susceptibility was not correlated with isoflavone levels from Mullaney et al. (Agronomy abstract. ASA, Madison, p 195, 2000). Cultivars were more resistant than landraces and wild accessions and tetraploid cultivars were more resistant than diploid cultivars. Besides the in-depth analysis for clover rot susceptibility, possible correlations with plant architecture and other diseases were investigated. Growth habit, branching, plant yield, flowering date and susceptibility to mildew, virus and rust diseases were investigated in a 3-year field trial. Unlike previously suggested, clover rot susceptibility was not correlated with branching or with plant yield over three years. On the other hand, late flowering accessions and accessions with erect growth habit were less susceptible to clover rot. Clover rot susceptibility was not correlated with susceptibility to rust disease (Uromyces trifolii) or viral diseases, but negatively with susceptibility to mildew (Erysiphe polygoni). Because no completely resistant accessions were found, the best way to improve clover rot resistance would be to select recurrently for resistant genotypes among diverse cultivars and landraces with lower susceptibility. Tetraploidisation of diploid populations with a higher resistance level can provide an additional level of protection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据