3.9 Article

Methylenetetrahydrofolate Reductase Activity Is Involved in the Plasma Membrane Redox System Required for Pigment Biosynthesis in Filamentous Fungi

期刊

EUKARYOTIC CELL
卷 9, 期 8, 页码 1225-1235

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00031-10

关键词

-

资金

  1. Danish Ministry for Food, Agriculture and Fishery
  2. Danish Research Council, Technology and Production [274-06-0371]

向作者/读者索取更多资源

Methylenetetrahydrofolate reductases (MTHFRs) play a key role in biosynthesis of methionine and S-adenosyl-L-methionine (SAM) via the recharging methionine biosynthetic pathway. Analysis of 32 complete fungal genomes showed that fungi were unique among eukaryotes by having two MTHFRs, MET12 and MET13. The MET12 type contained an additional conserved sequence motif compared to the sequences of MET13 and MTHFRs from other eukaryotes and bacteria. Targeted gene replacement of either of the two MTHFR encoding genes in Fusarium graminearum showed that they were essential for survival but could be rescued by exogenous methionine. The F. graminearum strain with a mutation of MET12 (Fg Delta MET12) displayed a delay in the production of the mycelium pigment aurofusarin and instead accumulated norrubrofusarin and rubrofusarin. High methionine concentrations or prolonged incubation eventually led to production of aurofusarin in the MET12 mutant. This suggested that the chemotype was caused by a lack of SAM units for the methylation of nor-rubrofusarin to yield rubrofusarin, thereby imposing a rate-limiting step in aurofusarin biosynthesis. The Fg Delta MET13 mutant, however, remained aurofusarin deficient at all tested methionine concentrations and instead accumulated nor-rubrofusarin and rubrofusarin. Analysis of MET13 mutants in F. graminearum and Aspergillus nidulans showed that both lacked extracellular reduction potential and were unable to complete mycelium pigment biosynthesis. These results are the first to show that MET13, in addition to its function in methionine biosynthesis, is required for the generation of the extracellular reduction potential necessary for pigment production in filamentous fungi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据