4.6 Article

Reproductive parameters of tropical lesser noddies respond to local variations in oceanographic conditions and weather

期刊

ESTUARINE COASTAL AND SHELF SCIENCE
卷 139, 期 -, 页码 110-118

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2013.12.026

关键词

breeding phenology; chick mass gain; chlorophyll-a; fledging success; Indian Ocean dipole mode; ocean primary productivity; sea surface temperature

资金

  1. [SFRH/BPD/66672/2009]
  2. [SFRH/BPD/46967/2008]
  3. Fundação para a Ciência e a Tecnologia [SFRH/BPD/46967/2008] Funding Source: FCT

向作者/读者索取更多资源

Most attempts to link seabirds and climate/oceanographic effects have concerned the Atlantic and Pacific Oceans with comparatively few studies in the tropical Indian Ocean. This paper examines the reproductive response of the lesser noddy Anous tenuirostris to temporal fluctuations in oceanographic and climatic conditions using 8 years of monitoring data from Aride Island (Seychelles), tropical Western Indian Ocean. We tested the hypothesis that breeding parameters (mean hatching date, mean egg size, hatching and fledging successes) and chick growth are influenced by local, seasonal oceanographic conditions as expressed by ocean primary productivity (surface chlorophyll-a concentrations; CC), sea surface temperature (SST) and wind speed. We also examined the relationship between lesser noddy breeding parameters and climate conditions recorded at the basin-wide scale of the Indian Ocean (Indian Ocean Dipole Mode Index, DMI). Our findings suggest that birds had a tendency to lay slightly larger eggs during breeding seasons (years) with higher CC during April-June (pre-laying, laying and incubation periods). Hatching date was positively related to SST in April-June, with the regression parameters suggesting that each 0.5 degrees C increase in SST meant a delay of approx.10 days in hatching date. A negative linear relationship was also apparent between hatching success and SST in June-August (hatching and chick-rearing periods), while the quadratic regression models detected a significant effect of wind speed in June-August on fledging success. Body mass increments of growing chicks averaged over 7-day periods were positively related with (2-week) lagged CC values and negatively related with (2-week) lagged SST values. No significant relationship between DMI and lesser noddy breeding parameters was found, but DMI indices were strongly correlated with local SST. Altogether, our results indicate that the reproduction of this top marine predator is dictated by fluctuations in local environmental conditions around the colony, while the effects of large-scale oceanographic processes (DMI) on our study population might be mediated by an effect on local SST. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据