4.6 Article

Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats

期刊

ESTUARINE COASTAL AND SHELF SCIENCE
卷 115, 期 -, 页码 366-376

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2012.10.003

关键词

salt marshes; TerraSAR-X; halophyte; tidal flats; backscattering coefficients

资金

  1. Korea Science and Engineering Foundation
  2. Ministry of Education, Science and Technology [M105DA000004-08D0100-0011A]
  3. Korea Aerospace Research Institute
  4. DLR as a part of TerraSAR-X AO project [COA0047]

向作者/读者索取更多资源

This study presents a method and application results of mapping different halophytes over tidal flats and salt marshes using high resolution space-borne X-band synthetic aperture radar (SAR) that has been rarely used for salt marsh mapping. Halophytes in a salt marshes are sensitive to sea-level changes, sedimentation, and anthropogenic modifications. The alteration of the demarcations among halophyte species is an indicator of sea level and environmental changes within a salt marsh. The boundary of an herbaceous halophyte patch is, however, difficult to determine using remotely sensed data because of its sparseness. We examined the ecological status of the halophytes and their distribution changes using TerraSAR-X and optical data. We also determined the optimum season for halophyte mapping. An annual plant, Suaeda japonica (S. japonica), and a typical perennial salt marsh grass, Phragrnites australis (P. australis), were selected for halophyte analysis. S. japonica is particularly sensitive to sea level fluctuation. Seasonal variation for the annual plant was more significant (1.47 dB standard deviation) than that for the perennial grass, with a pattern of lower backscattering in winter and a peak in the summer. The border between S. japonica and P. australis was successfully determined based on the distinctive X-band radar backscattering features. Winter is the best season to distinguish between the two different species, while summer is ideal for analyzing the distribution changes of annual plants in salt marshes. For a single polarization, we recommend using HH polarization, because it produces maximum backscattering on tidal flats and salt marshes. Our results show that high resolution SAR, such as TerraSAR-X and Cosmo-SkyMed, is an effective tool for mapping halophyte species in tidal flats and monitoring their seasonal variations. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据