4.4 Article

Drops can bounce from perfectly hydrophilic surfaces

期刊

EPL
卷 108, 期 2, 页码 -

出版社

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
DOI: 10.1209/0295-5075/108/24001

关键词

-

资金

  1. ISF grant [1415/12]
  2. Harvard MRSEC [DMR-0820484]
  3. NSF GRFP
  4. MacArthur Foundation

向作者/读者索取更多资源

Drops are well known to rebound from superhydrophobic surfaces and from liquid surfaces. Here, we show that drops can also rebound from a superhydrophilic solid surface such as an atomically smooth mica sheet. However, the coefficient of restitution C-R associated with this process is significantly lower than that associated with rebound from superhydrophobic surfaces. A direct imaging method allows us to characterize the dynamics of the deformation of the drop in entering the vicinity of the surface. We find that drop bouncing occurs without the drop ever touching the solid and there is a nanometer-scale film of air that separates the liquid and solid, suggesting that shear in the air film is the dominant source of dissipation during rebound. Furthermore, we see that any discrete nanometer-height defects on an otherwise hydrophilic surface, such as treated glass, completely inhibits the bouncing of the drop, causing the liquid to wet the surface. Our study adds a new facet to the dynamics of droplet impact by emphasizing that the thin film of air can play a role not just in the context of splashing but also bouncing, while highlighting the role of rare surface defects in inhibiting this response. Copyright (C) EPLA, 2014

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据