4.4 Article

Secondary polygonal instability of buckled spherical shells

期刊

EPL
卷 106, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1209/0295-5075/106/24004

关键词

-

向作者/读者索取更多资源

When a spherical elastic capsule is deflated, it first buckles axisymmetrically and subsequently loses its axisymmetry in a secondary instability, where the dimple acquires a polygonal shape. We explain this secondary polygonal buckling in terms of wrinkles developing at the inner side of the dimple edge in response to compressive hoop stress. Analyzing the axisymmetric buckled shape, we find a compressive hoop stress with parabolic stress profile at the dimple edge. We further show that there exists a critical value for this hoop stress, where it becomes favorable for the membrane to buckle out of its axisymmetric shape, thus releasing the compression. The instability mechanism is analogous to the formation of wrinkles under compressive stress. A simplified stability analysis allows us to quantify the critical stress for secondary buckling. Applying this secondary buckling criterion to the axisymmetric shapes, we can determine the critical volume for secondary buckling. Our analytical result is in close agreement with existing numerical data. Copyright (C) EPLA, 2014

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据