4.4 Article

Minimum accelerations from quantised inertia

期刊

EPL
卷 90, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1209/0295-5075/90/29001

关键词

-

向作者/读者索取更多资源

It has recently been observed that there are no disc galaxies with masses less than 10(9)M(circle dot) and this cutoff has not been explained. It is shown here that this minimum mass can be predicted using a model that assumes that 1) inertia is due to Unruh radiation, and 2) this radiation is subject to a Hubble-scale Casimir effect. The model predicts that as the acceleration of an object decreases, its inertial mass eventually decreases even faster stabilising the acceleration at a minimum value, which is close to the observed cosmic acceleration. When applied to rotating disc galaxies the same model predicts that they have a minimum rotational acceleration, i.e.: a minimum apparent mass of 1.1 x 10(9)M(circle dot), close to the observed minimum mass. The Hubble mass can also be predicted. It is suggested that assumption 1 above could be tested using a cyclotron to accelerate particles until the Unruh radiation they see is short enough to be supplemented by manmade radiation. The increase in inertia may be detectable. Copyright (C) EPLA, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据