4.4 Article

Intriguing viscosity effects in confined suspensions: A numerical study

期刊

EPL
卷 83, 期 6, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1209/0295-5075/83/64001

关键词

-

向作者/读者索取更多资源

The effective viscosity of dilute and semi-dilute suspensions in a shear flow in a microfluidic configuration is studied numerically. The suspension is composed of monodisperse and non-Brownian hard spherical buoyant particles confined between two walls in a shear flow. An abrupt change of the viscosity behaviour occurs with strong confinements: when the wall-to-wall distance is below five times the radius of the particles, we obtain a change of the sign of the contribution of the hydrodynamic interactions to the effective viscosity. This effect is the macroscopic counterpart of the peculiar micro-hydrodynamics of confined suspensions due to the influence of walls. In addition, for higher concentrations (above 25%), we find that the viscosity meets a minimum when the inter-wall distance is around five times the sphere radius. This phenomenon is reminiscent of the Fahraeus-Lindqvist effect for blood confined in small capillaries. However, we show that for sheared confined semi-dilute suspensions, the physical origin of this minimum is not due to a migration effect but to the change of hydrodynamic interactions. Copyright (c) EPLA, 2008

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据