4.5 Article

Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis

期刊

ENZYME AND MICROBIAL TECHNOLOGY
卷 49, 期 5, 页码 472-477

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2011.08.004

关键词

Brown rot fungi; Enzymatic hydrolysis; Polymerization degree; Crystallinity

资金

  1. FONDECYT [3100043]
  2. SENACYT

向作者/读者索取更多资源

The effects of biological pretreatment on Pin us radiata and Eucalyptus globulus, were evaluated after exposure to two brown rot fungi Gloephylum trabeum and Laetoporeus sulphureus. Changes in chemical composition, structural modification, and susceptibility to enzymatic hydrolysis in the degraded wood were analyzed. After eight weeks of biodegradation, the greatest loss of weight and hemicellulose were 13% and 31%, respectively, for P. radiata with G. trabeum. The content of glucan decreased slightly, being the highest loss of 20% for E. globulus with G. trabeum. Consistent with degradation mechanism of these fungi, lignin was essentially undegraded by both brown rot fungi. Both brown rot fungi cause a sharp reduction in the cellulose degree of polymerization (DP) in the range between 58% and 79%. G. trabeum depolymerized cellulose in both wood faster than L. sulphureus. Also, structural characteristic of crystalline cellulose were measured by using two different techniques - X-ray diffraction (XRD) and infrared spectroscopy (FT-IR). The biological pretreatments showed an effect on cellulose crystallinity structure, a decrease between 6% and 21% was obtained in the crystallinity index (CrI) calculated by IR, no changes were observed in the XRD. Material digestibility was evaluated by enzymatic hydrolysis, the conversion of cellulose to glucose increased with the biotreatment time. The highest enzymatic hydrolysis yields were obtained when saccharification was performed on wood biopretreated with G. trabeum (14% P. radiata and 13% E. globulus). Decreasing in DP and CrI, and hemicellulose removal result in an increase of enzymatic hydrolysis performance. Digestibility was better related to DP than with other properties. G. trabeum can be considered as a potential fungus for biological pretreatment, since it provides an effective process in breaking the wood structure, making it potentially useful in the development of combined pretreatments (biological-chemical). A viable alternative to pretreatment process that can be used is a bio-mimetic system, similar to low-molecular complexes generated by fungi such as G. trabeum combined pretreatments (biological-chemical). (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据