4.5 Article

Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila

期刊

ENZYME AND MICROBIAL TECHNOLOGY
卷 46, 期 6, 页码 430-437

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2010.01.004

关键词

Laccase; Chemical modification; Immobilisation; Mesoporous silicates; Stabilisation

资金

  1. European Commission [COOP-CT-2006-032628]

向作者/读者索取更多资源

Laccase from two different source organisms, Myceliophthora thermophila and Trametes hirsuta, were subjected to chemical modification in solution by (i) two bifunctional reagents, ethylene-glycol-N-hydroxy succinimide (EGNHS) and glutaraldehyde and (ii) by the monofunctional citraconic anhydride. The untreated and chemically modified forms of both enzymes were then immobilised onto three different types of mesoporous silicate (MPS) particle (MCM, CNS and SBA-15). Thermal stabilities of native, modified-soluble and immobilised laccases were then evaluated. Although the two laccases have similar lysine contents, those of M. thermophila are clearly more amenable to chemical modification. Treatment of the M. thermophila enzyme with EGNHS led to a 8.7-fold increase in thermal stability over the free soluble enzyme while glutaraldehyde gave a 5.7-fold increase. Increased activity of M. thermophila laccase occurred only with citraconic anhydride modification (a 3-fold increase), while the glutaraldehyde modification marginally increased the activity of the T. hirsuta enzyme (by 1.2-fold). Upon immobilisation onto MPS, the greatest increase in stability was for the glutaraldehyde-treated M. thermophila preparation on SBA-15 (24-fold over the soluble enzyme). Chemical modification of laccase from T. hirsuta with both glutaraldehyde and EGNHS gave only a 2-fold increase in stability, increasing >4-fold upon immobilisation onto SBA-15 and MCM-41/98. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据