4.5 Article

Life-history phenology strongly influences population vulnerability to toxicants: A case study with the mudsnail Potamopyrgus antipodarum

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 32, 期 8, 页码 1727-1736

出版社

WILEY
DOI: 10.1002/etc.2235

关键词

Phenology; Life history; In situ caging; Ecological risk assessment; Population modeling

资金

  1. Cluster Environnement of the Region Rhone-Alpes (France)

向作者/读者索取更多资源

One of the main objectives of ecological risk assessment is to evaluate the effects of toxicants on ecologically relevant biological systems such as populations or communities. However, the effects of toxicants are commonly measured on selected subindividual or individual endpoints due to their specificity against chemical stressors. Introducing these effects into population models is a promising way to predict impacts on populations. The models currently employed are very simplistic, and their environmental relevance needs to be improved to establish the ecological relevance of hazard assessment. The present study with the gastropod Potamopyrgus antipodarum combines a field experimental approach with a modeling framework. It clarifies the role played by seasonal variability of life-history traits in the population's vulnerability to the alteration of individual performance, potentially due to toxic stress. The present study comprised 3 steps: 1) characterization of the seasonal variability in life-history traits of a local population over 1 yr by using in situ experiments on caged snails, coupled with a demographic follow-up; 2) development of a periodic matrix population model that visualizes the monthly variability of population dynamics; and 3) simulation of the demographic consequences of an alteration in life-history traits (i.e., fertility, juvenile, and adult survival). The results revealed that demographic impacts strongly depend on the season when alterations of individual performance occur. Model analysis showed that this seasonal variability in population vulnerability is strongly related to the phenology of the population. The authors emphasize that improving the realism of population models is a major objective for ecological risk assessment, and that taking into account species phenology in modeling approaches should be a priority. Environ Toxicol Chem 2013;32:1727-1736. (c) 2013 SETAC

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据