4.5 Review

COMMUNITY RESPONSES TO CONTAMINANTS: USING BASIC ECOLOGICAL PRINCIPLES TO PREDICT ECOTOXICOLOGICAL EFFECTS

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 28, 期 9, 页码 1789-1800

出版社

WILEY
DOI: 10.1897/09-140.1

关键词

Community ecotoxicology; Contaminant transport; Global change; Indirect effects; Resistance/resilience

资金

  1. U. S. Environmental Protection Agency [R832441]
  2. National Science Foundation [DEB 0516227]
  3. U. S. Department of Agriculture [NRI 2006-01370, 2009-35102-05043]
  4. U. S. EPA [STAR R833835]
  5. EPA [909070, R832441] Funding Source: Federal RePORTER
  6. NIFA [2009-35102-05043, 583481] Funding Source: Federal RePORTER
  7. Division Of Environmental Biology
  8. Direct For Biological Sciences [0809487] Funding Source: National Science Foundation

向作者/读者索取更多资源

Community ecotoxicology is defined as the study of the effects of contaminants on patterns of species abundance, diversity, community composition, and species interactions. Recent discoveries that species diversity is positively associated with ecosystem stability, recovery, and services have made a community-level perspective on ecotoxicology more important than ever. Community ecotoxicology must explicitly consider both present and impending global change and shift from a purely descriptive to a more predictive science. Greater consideration of the ecological factors and threshold responses that determine community resistance and resilience should improve our ability to predict how and when communities will respond to, and recover from, xenobiotics. A better understanding of pollution-induced community tolerance, and of the costs of this tolerance, should facilitate identifying contaminant-impacted communities, thus forecasting the ecological consequences of contaminant exposure and determining the restoration effectiveness. Given the vast complexity of community ecotoxicology, simplifying assumptions, such as the possibility that the approximately 100,000 registered chemicals could be reduced to a more manageable number of contaminant classes with similar modes of action, must be identified and validated. In addition to providing a framework for predicting contaminant fate and effects, food-web ecology can help to identify communities that are sensitive to contaminants, contaminants that are particularly insidious to communities, and species that are crucial for transmitting adverse effects across trophic levels. Integration of basic ecological principles into the design and implementation of ecotoxicological research is essential for predicting contaminant effects within the context of rapidly changing, global environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据