4.5 Article

PHARMACEUTICAL INDUSTRY EFFLUENT DILUTED 1:500 AFFECTS GLOBAL GENE EXPRESSION, CYTOCHROME P450 1A ACTIVITY, AND PLASMA PHOSPHATE IN FISH

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 28, 期 12, 页码 2639-2647

出版社

WILEY
DOI: 10.1897/09-120.1

关键词

Pharmaceutical manufacturing; Industrial effluent; Microarray; Fish

资金

  1. Foundation for Strategic Environmental Research (MISTRA)
  2. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS)
  3. Swedish International Development Cooperation Agency (SIDA)
  4. Swedish Research Council

向作者/读者索取更多资源

Patancheru, near Hyderabad, India, is a major production site for the global bulk drug market. Approximately 90 manufacturers send their wastewater to a common treatment plant in Patancheru. Extraordinary high levels of a wide range of pharmaceuticals have recently been demonstrated in the treated effluent. As little as 0.2% of this effluent can strongly reduce the growth rate of tadpoles, but the underlying mechanisms of toxicity are not known. To begin addressing how the effluent affects aquatic vertebrates, rainbow trout (Oncorhynchus mykiss) were exposed to 0.2% effluent for 5 d. Several physiological endpoints, together with effects on global hepatic gene expression patterns, were analyzed. The exposed fish showed both an induction of hepatic cytochrome P450 1A (CYP1A) gene expression, as well as enzyme activity. Clinical blood chemistry analyses revealed an increase in plasma phosphate levels, which in humans indicates impaired kidney function. Several oxidative stress-related genes were induced in the livers; however, no significant changes in antioxidant enzyme activities or in the hepatic glutathione levels were found. Furthermore, estrogen-regulated genes were slightly up-regulated following exposure, and moderate levels of estriol were detected in the effluent. The present study identifies changes in gene expression triggered by exposure to a high dilution of the effluent, supporting the hypothesis that these fish are responding to chemical exposure. The pattern of regulated genes may contribute to the identification of mechanisms of sublethal toxicity, as well as illuminate possible causative agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据