4.7 Article

Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 25, 期 31, 页码 31705-31717

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-018-3134-4

关键词

MOF-100(Fe); Adsorption; Fe3O4; Core-shell structure; Diclofenac sodium

资金

  1. National Natural Science Foundation of China [51778618, 51478460, 51578037]
  2. Guangxi Province Technology Major Project [AA17202032]

向作者/读者索取更多资源

In this research, the adsorptive removal of diclofenac sodium, one of the representative pharmaceuticals and personal care products, from aqueous solution using Fe3O4@MOF-100(Fe) magnetic microspheres was studied for the first time. The Fe3O4@MOF-100(Fe) microspheres exhibit strong magnetism and stability, which were observed as a core-shell structure. The maximum adsorption capacity of Fe3O4@MOF-100(Fe) for diclofenac sodium can reach 377.36 mg L-1, which was higher than most of the adsorbents reported. The adsorption kinetics follows the pseudo-second-order kinetic equation. And the adsorption equilibrium of DCF can be described with Langmuir isotherm. In the cycle experiment, Fe3O4@MOF-100(Fe) material performed high adsorption efficiency for low-concentration diclofenac sodium solution, and the removal rate can still reach 80% after 5 cycles of adsorption without desorption. The mechanisms including electrostatic interaction, H-bond interaction, and pi-pi interaction that coexisted in the adsorption processes would be of benefit to enhance the adsorption capacity. The Fe3O4@MOF-100(Fe) magnetic microspheres offer exciting opportunities for further application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据