4.7 Article

Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI)

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 20, 期 10, 页码 7175-7185

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-013-1671-4

关键词

Magnetic carbon nanotubes; Cr(VI) removal; Equilibrium; Kinetics; Aqueous solution

资金

  1. National Funds for Distinguished Young Scientist [50925417]
  2. National Natural Science Foundation of China [51074191]
  3. National Twelfth Five-Year Plan for Science & Technology Support [2012BAC09B04]

向作者/读者索取更多资源

This work described a novel method for the synthesis of high-ferromagnetism nanoparticles (Fe3O4/CNTs) to efficiently remove Cr(VI) from aqueous solution. The Fe3O4/carbon nanotubes (CNTs) were prepared by in situ reduction with post-oxidation method by using cheap and environmentally friendly precursor under mild condition. Magnetic hysteresis loops revealed that Fe3O4/CNTs had superior saturation magnetization (152 emu/g), enabling the highly efficient recovery of Fe3O4/CNTs from aqueous solution by magnetic separation at low magnetic field gradients. FTIR, Raman, XPS, and TEM observations were employed to characterize the physical-chemical properties of Fe3O4/CNTs, demonstrating that CNTs were successfully coated with iron oxide matrix. The adsorption equilibrium of Cr(VI) on Fe3O4/CNTs was reached within 30 min. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm were chosen to analyze the equilibrium data. The results indicated that Langmuir model can well describe the equilibrium data with the maximum adsorption capacity of 47.98 mg/g at room temperature and 83.54 mg/g at 353 K. The adsorption capacity of Fe3O4/CNTs for Cr(VI) was greatly improved as compared to raw CNTs and other similar adsorbents reported. The pseudo-second-order kinetic model provided the best description of Cr(VI) adsorption on Fe3O4/CNTs. Most importantly, possible synthesis mechanism and Cr(VI) removal mechanism were explored. The results suggest that large amounts of Cr(VI) were adsorbed on Fe3O4/CNTs surface by substituting the surface position of -OH and then reducing it to Cr(OH)(3) and Cr2O3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据