4.7 Article

Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 20, 期 6, 页码 3639-3648

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-012-1272-7

关键词

Clays; Nanoscale zero-valent iron; Wastewater; Reuse

资金

  1. Fujian Minjiang Fellowship from Fujian Normal University

向作者/读者索取更多资源

Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu2+ and Zn2+ from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu2+ and Zn2+ from a aqueous solution containing a 100 mg/l of Cu2+ and Zn2+, where 92.9 % Cu2+ and 58.3 % Zn2+ were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu2+ and Zn2+. A kinetics study indicated that removing Cu2+ and Zn2+ with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn2+ on bentonite and the degradation of Cu(2+)and Zn2+ by nZVI on the bentonite. However, Cu2+ removal by B-nZVI was reduced rather than adsorption, while Zn2+ removal was main adsorption. Finally, Cu2+, Zn2+, Ni2+, Pb2+ and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据