4.7 Article

Application of artificial neural network for prediction of Pb(II) adsorption characteristics

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 20, 期 5, 页码 3322-3330

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-012-1245-x

关键词

Adsorption; Neurons; Transfer function; Backpropagation; Levenberg-Marquardt algorithm; Normalization

向作者/读者索取更多资源

The adsorption of Pb(II) onto the surface of microwave-assisted activated carbon was studied through a two-layer feedforward neural network. The activated carbon was developed by microwave activation of Acacia auriculiformis scrap wood char. The prepared adsorbent was characterized by using Brunauer-Emmett-Teller (BET) surface area analyzer, scanning electron microscope (SEM), and X-ray difractometer. In the present study, the input variables for the proposed network were solution pH, contact time, initial adsorbate concentration, adsorbent dose and temperature, whereas the output variable was the percent Pb(II) removal. The network had been trained by using different algorithms and based on the lowest mean squared error (MSE) value and validation error, resilient backpropagation algorithm with 12 neurons in the hidden layer was selected for the present investigation. The tan sigmoid and purelin transfer function were used in the hidden and the output layers of the proposed network, respectively. The model predicted and experimental values of the percent Pb(II) removal were also compared and both the values were found to be in reasonable agreement with each other. The performance of the developed network was further improved by normalizing the experimental data set and it was found that after normalization, the MSE and validation error were reduced significantly. The sensitivity analysis was also performed to determine the most significant input parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据