4.7 Article

Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 19, 期 6, 页码 2115-2124

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-011-0711-1

关键词

Polyethylene succinate (PES); Bioremediation; Pseudomonas; Esterase

资金

  1. CSIR-Junior Research Fellowship, Government of India
  2. Ministry of Environment and Forest, Government of India
  3. University of Calcutta
  4. Department of Science and Technology, Government of West Bengal, India

向作者/读者索取更多资源

Polyethylene succinate (PES) is a biodegradable synthetic polymer and therefore widely used as a base material in plastic industry to circumvent the environmental problems related with the non-biodegradability of other polymers like polyethylene. Till date only few organisms have been reported to have the ability to degrade PES. Therefore for better management of PES-related environmental waste, the present study is targeted towards isolating mesophilic organism(s) capable of more efficient degradation of PES. Strain AKS2 was isolated from soil based on survival on a selection plate wherein PES was used as sole carbon source. Ribotyping and biochemical tests revealed that AKS2 is a new strain of Pseudomonas. Scanning electron and atomic force microscopic analysis of the PES films obtained after incubation with AKS2 confirmed PES-degradation ability of AKS2, wherein an alteration in surface topology was observed. The kinetics of PES weight loss showed that AKS2 degrades PES maximally during its logarithmic growth phase at a rate of 1.65 mg/day. This degradation is mediated by esterase activity and may also involve cell-surface hydrophobicity. It has also been observed that AKS2 is able to degrade PES considerably even in the presence of glucose, which is likely to increase the bioremediation potential of this isolate. A new strain of Pseudomonas has been isolated from soil that is able to adhere to PES and degrade this polymer efficiently. This organism has the potential to be implemented as a useful tool for bioremediation of PES-derived materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据