4.8 Article

Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 21, 页码 12633-12641

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b03261

关键词

-

资金

  1. National Science Foundation [CBET-1403826]
  2. [MCF-677785]

向作者/读者索取更多资源

Though electrochemical deionization technologies have been widely explored for brackish water desalination and selective ion removal, their sustained performance in the presence of foulants common to environmental waters remains unclear. This study investigates the fundamental mechanisms by which carbonaceous electrodes used in capacitive deionization and insertion electrodes used for high-capacity selective ion removal are affected by the presence of humic acid (HA). We evaluate HA adsorption behavior and the resulting impact on the ion storage capacity and cycling stability of the electrode materials. We find that HA is primarily adsorbed to the mesopores of two carbonaceous electrodes with distinctly different pore structures, but that the ion storage and transport properties of the electrodes are not significantly impacted by HA adsorption. In contrast, HA adsorption resulted in sharp capacity decay for the insertion (Na4Mn9O18) electrode. We attribute this decay to both hindered Na+ ion diffusion to the insertion interface in the presence of adsorbed HA, as well as HA mediated electrode dissolution. These findings highlight the contrasting mechanisms for HA fouling of capacitive and insertion electrodes and suggest that insertion electrodes may be more susceptible to performance decline in electrochemical deionization of environmental waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据