4.8 Article

Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 18, 页码 10286-10296

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b02027

关键词

-

资金

  1. ANR [ANR-10-EQPX-27-01]

向作者/读者索取更多资源

Pyrite (cubic FeS2) is the most abundant metal sulfide in nature and also the main host mineral of toxic mercury (Hg). Release of mercury in acid mine drainage resulting from the oxidative dissolution of pyrite in coal and ore and rock resulting from mining, processing, waste management, reclamation, and large construction activities is an ongoing environmental challenge. The fate of mercury depends on its chemical forms at the point source, which in turn depends on how it occurs in pyrite. Here, we show that pyrite in coal, sedimentary rocks, and hydrothermal ore deposits can host varying structural forms of Hg which can be identified with high energy-resolution XANES (HR-XANES) spectroscopy. Nominally divalent Hg is incorporated at the Fe site in pyrite from coal and at a marcasite-type Fe site in pyrite from sedimentary rocks. Distinction of the two Hg bonding environments offers a mean to detect microscopic marcasite inclusions (orthorhombic FeS2) in bulk pyrite. In epigenetic pyrite from Carlin-type Au deposit, up to 55 +/- 6 at. % of the total Hg occurs as metacinnabar nanoparticles (beta-HgSNP), with the remainder being substitutional at the Fe site. Pyritic mercury from Idrija-type Hg deposit (alpha-HgS ore) is partly divalent and substitutional and partly reduced into elemental form (liquid). Divalent mercury ions, mercury sulfide nanoparticles, and elemental mercury released by the oxidation of pyrite in acid mine drainage settings would have different environmental pathways. Our results could find important applications for designing control strategies of mercury released to land and water in mine-impacted watersheds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据