4.8 Article

Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 52, 期 17, 页码 9972-9982

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.8b01894

关键词

-

资金

  1. National Natural Science Foundation of China [21507150, 21577162]
  2. State Key Joint Laboratory of Environment Simulation and Pollution Control [15K10ESPCT]
  3. Innovation in Cross-functional Team Program of the Chinese Academy of Sciences [2015]

向作者/读者索取更多资源

The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 +/- 0.1 mg m(-2) +/- h(-1)) than single filtration (2.5 +/- 0.1 mg m(-2) h(-1)) or batch e-Fenton processes (4.3 +/- 0.05 mg m(-2) h(-1)). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据