4.8 Article

Economical Way to Synthesize SSZ-13 with Abundant Ion-Exchanged Cu+ for an Extraordinary Performance in Selective Catalytic Reduction (SCR) of NOx by Ammonia

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 48, 期 23, 页码 13909-13916

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es503707c

关键词

-

资金

  1. National Natural Science Foundation of China [21177008, 21477007]
  2. Fundamental Research Funds for the Central Universities [YS1401]
  3. National 863 Program [2013AA065900]

向作者/读者索取更多资源

In this study, an economical way for SSZ-13 preparation with the essentially cheap choline chloride as template has been attempted. The as-synthesized SSZ-13 zeolite after ion exchange by copper nitrate solution exhibited a superior SCR performance (over 95% NOx conversion across a broad range from 150 to 400 degrees C) to the traditional zeolite-based catalysts of Cu-Beta and Cu-ZSM-5. Furthermore, the opportune size of pore opening (similar to 3.8 angstrom) made Cu-SSZ-13 exhibiting the best selectivity to N-2 as well as satisfactory tolerance toward SO2 and C3H6 poisonings. The characterization (XRD, XPS, XRF, and H-2-TPR) of samples confirmed that Cu-SSZ-13 possessed the most abundant Cu cations among three investigated Cu-zeolites; furthermore, either on the surface or in the bulk the ratio of Cu+/Cu2+ ions for Cu-SSZ-13 is also the highest. New finding was announced that CHA-type topology is in favor of the formation of copper cations, especially generating much more Cu+ ions than the others, rather than CuO. The activity test of Cu(CuCl)-ZSM-5 (prepared by a solid-state ion-exchange method) clearly indicated that Cu+ ions could make a major contribution to the low-temperature deNOx activity. The activity of protonic zeolites (H-SSZ-13, H-Beta, H-ZSM-5) revealed the topology effect on SCR performances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据