4.8 Article

Biotransformation of 6:2 Fluorotelomer Alcohol (6:2 FTOH) by a Wood-Rotting Fungus

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 48, 期 7, 页码 4012-4020

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es4057483

关键词

-

资金

  1. Air Force Civil Engineer Center [FA8903-11-C-8009]
  2. U.S. Environmental Protection Agency Science to Achieve Results (EPA-STAR) Fellowship
  3. UCLA Hellman Fellowship
  4. DuPont

向作者/读者索取更多资源

Biotransformation of 6:2 FTOH [F-(CF2)(6)CH2CH2OH] by the white-rot fungus, Phanerochaete chrysosporium, was investigated in laboratory studies. 6:2 FTOH is a raw material increasingly being used to replace products that can lead to long-chain perfluoroalkyl carboxylic acids (PFCAs, >= 8 carbons). During a product's life cycle and after final disposal, 6:2 FTOH-derived compounds may be released into the environment and potentially biotransformed. In this study, P. chrysosporium transformed 6:2 FTOH to perfluorocarboxylic acids (PFCAs), polyfluorocarboxylic acids, and transient intermediates within 28 days. 5:3 Acid [F(CF2)(5)CH2CH2COOH] was the most abundant transformation product, accounting for 32-43 mol % of initially applied 6:2 FTOH in cultures supplemented with lignocellulosic powder, yeast extract, cellulose, and glucose. PFCAs, including perfluoropentanoic (PFPeA) and perfluorohexanoic (PFHxA) acids, accounted for 5.9 mol % after 28-day incubation. Furthermore, four new transformation products as 6:2 FTOH conjugates or 5:3 acid analogues were structurally confirmed. These results demonstrate that P. chrysosporium has the necessary biochemical mechanisms to drive 6:2 FTOH biotransformation pathways toward more degradable polyfluoroalkylcarboxylic acids, such as 5:3 acid, with lower PFCA yields compared to aerobic soil, sludge, and microbial consortia. Since bacteria and fungi appear to contribute differently toward the environmental loading of FTOH-derived PFCAs and polyfluorocarboxylic acids, wood-rotting fungi should be evaluated as potential candidates for the bioremediation of wastewater and groundwater contaminated with fluoroalkyl substances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据