4.2 Article

Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice

期刊

JOURNAL OF REPRODUCTION AND DEVELOPMENT
卷 61, 期 1, 页码 35-41

出版社

SOCIETY REPRODUCTION & DEVELOPMENT-SRD
DOI: 10.1262/jrd.2014-105

关键词

Granulosa cells; Melatonin; Oxidative stress; Reactive oxygen species

资金

  1. JSPS KAKENHI Grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan [24592471, 24791704, 24791705, 25293343, 25462559, 25462560, 25861495, 26670726, 26861328, 26861329, 26861330, 26462492]
  2. Grants-in-Aid for Scientific Research [26861328, 25462560, 25293343, 26861329, 26861330, 24791704, 24791705, 25861495, 26670726, 26462492, 24592471, 25462559] Funding Source: KAKEN

向作者/读者索取更多资源

Melatonin protects luteinized granulosa cells (GCs) from oxidative stress in the follicle during ovulation. However, it is unclear in which cellular components (e.g., nuclei, mitochondria, or plasma membranes) melatonin works as an antioxidant. GCs from immature (3 wks) ICR mice were incubated with hydrogen peroxide (H2O2; 0.01, 0.1, 1, 10 mM) in the presence or absence of melatonin (100 mu g/ml) for 2 h. DNA damage was assessed by fluorescence-based immunocytochemistry using specific antibodies for 8-hydroxydeoxyguanosine (8-OHdG), an indicator of oxidative guanine base damage in DNA, and for histone H2AX phosphorylation (gamma H2AX), a marker of double-strand breaks of DNA. Mitochondrial function was assessed by the fluorescence intensity of MitoTracker Red probes, which diffuse across the membrane and accumulate in mitochondria with active membrane potentials. Lipid peroxidation of plasma membranes was analyzed by measuring hexanoyl-lysine (HEL), a oxidative stress marker for lipid peroxidation. Apoptosis of GCs was assessed by nuclear fragmentation using DAPI staining, and apoptotic activities were evaluated by caspase-3/7 activities. H2O2 treatment significantly increased the fluorescence intensities of 8-OHdG and gamma H2AX, reduced the intensity of MitoTracker Red in the mitochondria, increased HEL concentrations in GCs, and enhanced the number of apoptotic cells and caspase-3/7 activities. All these changes were significantly decreased by melatonin treatment. Melatonin reduced oxidative stress-induced DNA damage, mitochondrial dysfunction, lipid peroxidation, and apoptosis in GCs, suggesting that melatonin protects GCs by reducing oxidative stress of cellular components including nuclei, mitochondria, and plasma membranes. Melatonin helps to maintain the integrity of GCs as an antioxidant in the preovulatory follicle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据