4.8 Article

Long-Term Performance of Liter-Scale Microbial Fuel Cells Treating Primary Effluent Installed in a Municipal Wastewater Treatment Facility

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 9, 页码 4941-4948

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es400631r

关键词

-

资金

  1. Veolia Water North America

向作者/读者索取更多资源

Two 4 L tubular microbial fuel cells (MFCs) were installed in a municipal wastewater treatment facility and operated for more than 400 days on primary effluents. Both MFCs removed 65-70% chemical oxygen demand (COD) at a hydraulic retention time (HRT) of 11 h and reduced about 50% suspended solids. The COD removal rates were about 0.4 (total) or 0.2 (soluble) kg m(-3) day(-1). They could handle fluctuation, such as emptying the anode for 1-3 days or different HRTs. The preliminary analysis of energy production and consumption indicated that the two MFCs could theoretically achieve a positive energy balance and energy consumption could be reduced using larger tubing connectors. Through linkage to a denitrifying MFC, the MFC system improved the removal of total nitrogen from 27.1 to 76.2%; however, the energy production substantially decreased because of organic consumption in the denitrifying MFC. Establishing a carbon (electron) balance revealed that sulfate reduction was a major electron scavenger (37-64%) and methane production played a very minor role (1.3-3.3%) in electron distribution. These results demonstrate the technical viability of MFC technology outside the laboratory and its potential advantages in low energy consumption, low sludge production, and energy recovery from wastes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据