4.8 Article

Influence of Chloride and Fe(II) Content on the Reduction of Hg(II) by Magnetite

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 13, 页码 6987-6994

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es304761u

关键词

-

资金

  1. DOE Subsurface Biogeochemical Research (SBR) Program, Office of Biological and Environmental Research (BER), Office of Science [DE-AC02-06CH11357]
  2. DOE [DE-AC02-06CH11357]
  3. National Science Foundation [EAR-0821615]
  4. University of Iowa

向作者/读者索取更多资源

Abiotic reduction of inorganic mercury by natural organic matter and native soils is well-known, and recently there is evidence that reduced iron (Fe) species, such as magnetite, green rust, and Fe sulfides, can also reduce Hg(II). Here, we evaluated the reduction of Hg(II) by magnetites with varying Fe(II) content in both the absence and presence of chloride. Specifically, we evaluated whether magnetite stoichiometry (x = Fe(II)/Fe(III)) influences the rate of Hg(II) reduction and formation of products. In the absence of chloride, reduction of Hg(II) to Hg(0) is observed over a range of magnetite stoichiometries (0.29 < x < 0.50) in purged headspace reactors and unpurged low headspace reactors, as evidenced by Hg recovery in a volatile product trap solution and Hg L-III-edge X-ray absorption near edge spectroscopy (XANES). In the presence of chloride, however, XANES spectra indicate the formation of a metastable Hg(I) calomel species (Hg2Cl2) from the reduction of Hg(II). Interestingly, Hg(I) species are only observed for the more oxidized magnetite particles that contain lower Fe(II) content (x < 0.42). For the more reduced magnetite particles (x >= 0.42), Hg(II) is reduced to Hg(0) even in the presence of high chloride concentrations. As previously observed for nitroaromatic compounds and uranium, magnetite stoichiometry appears to influence the rate of Hg(II) reduction (both in the presence and absence of chloride) confirming that it is important to consider magnetite stoichiometry when assessing the fate of contaminants in Fe-rich subsurface environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据