4.8 Article

Exposure of the Yeast Saccharomyces cerevisiae to Functionalized Polystyrene Latex Nanoparticles: Influence of Surface Charge on Toxicity

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 7, 页码 3417-3423

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es400053x

关键词

-

资金

  1. Japan Society for the Promotion of Science, KAKENHI [24310066]

向作者/读者索取更多资源

Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study, we investigated the toxicity and behavior of surface-functionalized nanoparticles toward yeast (Saccharomyces cerevisiae). The colony count method and confocal microscopy were used to examine the cytotoxicity of manufactured polystyrene latex (PSL) nanoparticles with various functional groups (amine, carboxyl, sulfate, and nonmodified). S. cerevisiae were exposed to PSL nanoparticles (40 mg/L) dispersed in 5-154 mM NaCl solutions for 1 h. Negatively charged nanoparticles had little or no toxic effect. Interestingly, nanoparticles with positively charged amine groups (p-Amine) were not toxic in 154 mM NaCl, but highly toxic in 5 mM NaCl. Confocal microscopy indicated that in 154 mM NaCl, the p-Amine nanoparticles were internalized by endocytosis, whereas in 5 mM NaCl they covered the dead cell surfaces. This demonstrates that nanoparticle-induced cell death might to be related to their adhesion to cells rather than their internalization. Together, these findings identify important factors in determining nanoparticle toxicity that might affect their impact on the environment and human health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据