4.8 Article

Graphene-Based Environmental Barriers

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 14, 页码 7717-7724

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es301377y

关键词

-

资金

  1. NIEHS [P42 ES013660]
  2. U.S. National Science Foundation [CBET-1132446]
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [1308396] Funding Source: National Science Foundation

向作者/读者索取更多资源

Many environmental technologies rely on containment by engineered barriers that inhibit the release or transport of toxicants. Graphene is a new, atomically thin, two-dimensional sheet material, whose aspect ratio, chemical resistance, flexibility, and impermeability make it a promising candidate for inclusion in a next generation of engineered barriers. Here we show that ultrathin graphene oxide (GO) films can serve as effective barriers for both liquid and vapor permeants. First, GO deposition on porous substrates is shown to block convective flow at much lower mass loadings than other carbon nanomaterials, and can achieve hydraulic conductivities of 5 x 10(-12) cm/s or lower. Second we show that ultrathin GO films of only 20-nm thickness coated on polyethylene films reduce their vapor permeability by 90% using elemental mercury as a model vapor toxicant The barrier performance of GO in this thin-film configuration is much better than the Nielsen model limit, which describes ideal behavior of flake like fillers uniformly imbedded in a polymer. The Hg barrier performance of GO films is found to be sensitive to residual water in the films, which is consistent with molecular dynamics (MD) simulations that show lateral diffusion of Hg atoms in graphene interlayer spaces that have been expanded by hydration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据