4.8 Article

Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 11, 页码 6288-6296

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es3001618

关键词

-

资金

  1. U.S. Environmental Protection Agency through its Office of Research and Development

向作者/读者索取更多资源

Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO3 and AgNPs have distinct expression profiles suggesting different modes of toxicity. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO3 caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据