4.8 Article

Stabilization or Oxidation of Nanoscale Zerovalent Iron at Environmentally Relevant Exposure Changes Bioavailability and Toxicity in Medaka Fish

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 15, 页码 8431-8439

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es3006783

关键词

-

资金

  1. National Science Council, Taiwan

向作者/读者索取更多资源

Nanoscale zerovalent iron (nZVI)-based nano-technologies are increasingly being used for environmental remediation; however, the fate and ecotoxicologic effects of nZVI remain unclear. Larvae of medaka fish (Oryzias latipes) underwent 3-14 days' aqueous exposure to thoroughly characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nZVI, bare nZVI, nanoscale iron oxide (nFe(3)O(4)) or ferrous ion [Fe(II)(aq)] at mu g/L-mg/L levels to assess the causal toxic effect(s) of iron nanoparticles (NPs). Acute larval mortality was decreased in the order of Fe(II)(aq) > CMC-nZVI > nZVI > nFe(3)O(4). CMC-nZVI (100 mg/L) increased hypoxia and reactive oxygen species (ROS) and Fe(II)(aq) production, thus increasing mortality and oxidative stress response as compared with unstabilized nZVI. Additionally, nFe(3)O(4) and nZVI were more bioavailable than suspended CMC-nZVI or Fe(II)(aq). Antioxidant activities were significantly altered by induced intracellular ROS levels in larvae with subchronic exposure to nFe(3)O(4) or Fe(II)(aq) at environmentally relevant concentrations (0.5-5 mg/L). We report on different organizational biomarkers used for rapidly assessing the lethal and sublethal toxicity of nZVI and its stabilized or oxidized products. The toxicity results implicate a potential ecotoxicological fate and impact of nZVI on the aquatic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据