4.8 Article

EXAFS and DFT Investigations of Uranyl Arsenate Complexes in Aqueous Solution

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 4, 页码 2228-2233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es203284s

关键词

-

资金

  1. European Synchrotron Radiation Facility

向作者/读者索取更多资源

Uranium and arsenic often co-occur in nature, for example, in acid mine drainage waters. Interaction with arsenic is thus important to understand uranium mobility in aqueous solutions. For the present study, EXAFS spectroscopy was used to investigate the formation and identify the structure of aqueous uranyl arsenate species at pH 2. The nearest U-As distance of 3.39 angstrom, observed in shock-frozen liquid samples, was significantly shorter than that observed in solid uranyl arsenate minerals. The shorter bond length indicated that the solution contained a bidentate-coordinated species, in contrast to the monodentate coordination in solid uranyl arsenate minerals. The U-As coordination number of 1.6 implied that two uranyl arsenate species with U:As ratios of 1:1 and 1:2 formed in nearly equal proportions and that the hydrated uranyl ion was present only as a minor component. The two uranyl arsenate species could not be differentiated spectroscopically, since their U-As distances were equal. A comparison based on DFT modeling indicated for both the 1:1 and the 1:2 species, that the bidentate arsenates were bound to uranium with one of the binding oxygen atoms being protonated. Based on the present spectroscopic study, the two species that will have to be considered in acidic uranium-arsenic-rich solutions are thus UO2H2AsO4+, and UO2(H2AsO4)(2)(0).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据