4.8 Article

Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 18, 页码 9941-9947

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es204073t

关键词

-

资金

  1. National Natural Science Foundation of China [20977001, 21025728]
  2. China Ministry of Environmental Protection's Special Funds for Scientific Research on Public Welfare [201009002]

向作者/读者索取更多资源

Simultaneous measurements of aerosol size, distribution of number, mass, and chemical compositions were conducted in the winter of 2007 in Beijing using a Twin Differential Mobility Particle Sizer and a Micro Orifice Uniform Deposit Impactor. Both material density and effective density of ambient particles were estimated to be 1.61 +/- 0.13 g cm(-3) and 1.62 +/- 0.38 g cm(-3) for PM1.8 and 1.73 +/- 0.14 g cm(-3) and 1.67 +/- 0.37 g cm(-3) for PM10. Effective density decreased in the nighttime, indicating the primary particles emission from coal burning influenced the density of ambient particles. Size-resolved material density and effective density showed that both values increased with diameter from about 1.5 g cm(-3) at the size of 0.1 mu m to above 2.0 g cm(-3) in the coarse mode. Material density was significantly higher for particles between 0.56 and 1.8 mu m during clean episodes. Dynamic Shape Factors varied within the range of 0.95-1.13 and decreased with particle size, indicating that coagulation and atmospheric aging processes may change the shape of particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据