4.8 Article

Role of Hydroxyl Radicals and Mechanism of Escherichia coli Inactivation on Ag/AgBr/TiO2 Nanotube Array Electrode under Visible Light Irradiation

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 46, 期 7, 页码 4042-4050

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es204079d

关键词

-

资金

  1. National Nature Science Foundation of China [20877013, 20837001, NSFC-RGC 21061160495]
  2. National High Technology Research and Development Program of China (863 Program) [2007AA061402]
  3. Major State Basic Research Development Program of China (973 Program) [2007CB613306]

向作者/读者索取更多资源

A ternary Ag/AgBr/TiO2 nanotube array electrode with enhanced visible-light activity was synthesized by a two-step approach including electrochemical process of anodization and an in situ photoassisted deposition strategy. The dramatically enhanced photoelectrocatalytic activity of the composite electrode was evaluated via the inactivation of Escherichia coli under visible light irradiation (lambda>420 nm), whose performance of complete sterilization was much superior to other reference photocatalysts. PL, ESR, and radicals trapping studies revealed hydroxyl radicals were involved as the main active oxygen species in the photoelectrocatalytic reaction. The process of the damage of the cell wall and the cell membrane was directly observed by ESEM, TEM, and FTIR, as well as further confirmed by determination of potassium ion leakage from the killed bacteria. The present results pointed to oxidative attack from the exterior to the interior of the Escherichia coli by OH center dot, O-2(center dot-), holes and Br-0, causing the cell to die as the primary mechanism of photoelectrocatalytic inactivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据