4.8 Article

In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 1, 页码 63-70

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es3016793

关键词

-

资金

  1. National Risk Assessment Partnership (NRAP) in the U.S. DOE Office of Fossil Energy's Carbon Sequestration Program

向作者/读者索取更多资源

CO2 injection into deep geologic formations for long-term storage will cause a decrease in aqueous pH due to CO2 dissolution into reservoir water/brine. Current studies seeking to assess chemical changes under geological CO2 sequestration (GCS) conditions rely largely on thermodynamic modeling due to the lack of reliable experimental methods. In this work, a spectrophotometric method utilizing bromophenol blue to measure pH in laboratory experiments under GCS-relevant conditions was developed. The method was tested in simulated reservoir fluids (CO2-NaCl-H2O) at different temperatures, pressures, and ionic strengths, and the results were compared with those from other experimental studies and geochemical models. Measured pH values were generally in agreement with the models, but inconsistencies were present between the models. In situ pH measurements for a basalt rock-CO2-brine system were conducted under GCS conditions. The pH increased to 3.52 during a 10-day period due to rock dissolution, compared to pH 2.95 for the CO2-brine system without rock. The calculated pH values from geochemical models were 0.22-0.25 units higher than the measured values (assuming all iron in the system was in the form of Fe2+). This work demonstrates the use of in situ spectrophotometry for pH measurement under GCS-relevant conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据