4.8 Article

Water Use at Pulverized Coal Power Plants with Postcombustion Carbon Capture and Storage

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 45, 期 6, 页码 2479-2485

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es1034443

关键词

-

资金

  1. U.S. Department of Energy from the National Energy Technology Laboratory (DOE/NETL) [DE-AC26-04NT4187]
  2. Divn Of Social and Economic Sciences
  3. Direct For Social, Behav & Economic Scie [949710] Funding Source: National Science Foundation

向作者/读者索取更多资源

Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO2, the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据