4.8 Article

Metabolomics of Microliter Hemolymph Samples Enables an Improved Understanding of the Combined Metabolic and Transcriptional Responses of Daphnia magna to Cadmium

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 45, 期 8, 页码 3710-3717

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es1037222

关键词

-

资金

  1. US National Science Foundation [BES-0504603]
  2. UK Natural Environment Research Council [NER/S/A/2006/14053]
  3. US EPA through its Office of Research and Development

向作者/读者索取更多资源

Omic technologies offer unprecedented opportunities to better understand mode (s)-of-toxicity and downstream secondary effects by providing a holistic view of the molecular changes underlying physiological disruption. Crustacean hemolymph represents a largely untapped biochemical resource for such toxicity studies. We sought to characterize changes in the hemolymph metabolome and whole-body transcriptome to reveal early processes leading to chronic toxicity in the indicator species, Daphnia magna, after 24-h sublethal cadmium exposure (18 mu g/L, corresponding to 1/10 LC50). We first confirmed that metabolites can be detected and identified in small volumes (similar to 3-6 mu L) of D. magna hemolymph using Fourier transform ion cyclotron resonance mass spectrometry and NMR spectroscopy. Subsequently, mass spectrometry based metabolomics of hemolymph identified disruption to two major classes of metabolites: amino acids and fatty acids. These findings were compared to differentially expressed genes identified by a D. magna 44k oligonucleotide microarray, which included decreased levels of digestive enzymes and increased expression of cuticle proteins and oxidative stress response genes. The combination of metabolic and transcriptional changes revealed through KEGG pathway analysis and gene ontology, respectively, enabled a more complete understanding of how cadmium disrupts nutrient uptake and metabolism, ultimately resulting in decreased energy reserves and chronic toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据