4.8 Article

Impact of Porous Media Grain Size on the Transport of Multi-walled Carbon Nanotubes

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 45, 期 22, 页码 9765-9775

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es2017076

关键词

-

资金

  1. Ontario Ministry of the Environment
  2. Natural Sciences and Engineering Research Council of Canada
  3. Canadian Foundation for Innovation

向作者/读者索取更多资源

Nanoparticles possess unique physical, electrical, and chemical properties which make them attractive for use in a wide range of consumer products. Through their manufacturing, usage, and eventual disposal, nanoparticles are expected to ultimately be released to the environment after which point they may pose environmental and human health risks. One critical component of understanding and modeling those potential risks is their transport in the subsurface environment. This study investigates the mobility of one important nanoparticle (multi-walled carbon nanotubes or MWCNTs) through porous media, and makes the first measurements on the impact of mean collector grain size (d(50)) on MWCNT retention. Results from one-dimensional column experiments conducted under various physical and chemical conditions coupled with results of numerical modeling assessed the suitability of traditional transport models to predict MWCNT mobility. Findings suggest that a dual deposition model coupled with site blocking greatly improves model fits compared to traditional colloid filtration theory. Of particular note is that the MWCNTs traveled through porous media ranging in size from fine sand to silt resulting in normalized concentrations of MWCNTs in the effluent in excess of 60% of the influent concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据