4.8 Article

Mussels Increase Xenobiotic (Azaspiracid) Toxicity Using a Unique Bioconversion Mechanism

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 45, 期 7, 页码 3102-3108

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es103612c

关键词

-

资金

  1. Higher Education Authority of Ireland, Department of Education and Science
  2. European Regional Development Fund under the Program for Research in Third Level Institutions [PRTLI-4]
  3. Environment and Climate Change: Impacts and Responses

向作者/读者索取更多资源

Azaspiracid Poisoning (AZP) is a human toxic syndrome which is associated with the consumption of bivalve shellfish. Unlike other shellfish, mussels contain a large array of azaspiracid analogs, many of which are suspected bioconversion products. These studies were conducted to elucidate the metabolic pathways of azaspiracid (AZA1) in the blue mussel (Mytilus edulis) and revealed that the main biotransformation product was the more toxic demethyl analog, AZA3. To elucidate the mechanism of this C-demethylation, an unprecedented xenobiotic bioconversion step in shellfish, AZA1 was fed to mussels that contained no detectable azaspiracids. Triple quadrupole mass spectrometry (MS) and high resolution Orbitrap MS were used to determine the uptake of AZA1 and the toxin profiles in three tissue compartments of mussels. The second most abundant bioconversion product was identified as AZA17, a carboxyl analog of AZA3, which is a key intermediate in the formation of AZA3. Also, two pairs of isomeric hydroxyl analogs, AZA4/AZA5 and AZA7/AZA8, have been confirmed as bioconversion products for the first time. Ultra high resolution (100 k) MS studies showed that the most probable structural assignment for AZA17 is 22-carboxy-AZA3 and a mechanism for its facile decarboxylation to form AZA3 has been proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据