4.8 Article

Gas Chromatographic Analysis with Chiral Cyclodextrin Phases Reveals the Enantioselective Formation of Hydroxylated Polychlorinated Biphenyls by Rat Liver Microsomes

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 45, 期 22, 页码 9590-9596

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es2014727

关键词

-

资金

  1. NIH [ES06694]
  2. National Institute of Environmental Health Sciences [ES05605, ES013661, ES017425]

向作者/读者索取更多资源

Chiral PCB congeners are major components of PCB mixtures and undergo enantioselective biotransformation to hydroxylated (OH-)PCBs by cytochrome P450 enzymes. While it is known that biotransformation results in an enantiomeric enrichment of the parent PCB, it is currently unknown if OH-PCBs are formed enantioselectively. The present study screened seven commercial capillary gas chromatography columns containing modified beta- or gamma-cyclodextrins for their potential to separate the atropisomers of methylated derivatives of OH-PCB. The atropisomers of 3-, 4- and 5-methoxy derivatives were at least partially separated on one or more columns. A subsequent biotransformation study was performed with rat liver microsomes to assess if hydroxylated metabolites are formed enantioselectively from PCBs 91, 95, 132, and 149. The OH-PCBs were extracted from the microsomal incubations, derivatized with diazomethane and analyzed as the respective methoxylated (MeO-)PCB derivatives using selected columns. The 5-hydroxylated metabolites of PCBs 91, 95, 132, and 149 were the major metabolites, which is consistent with PCB's biotransformation by cytochrome P450 2B enzymes. All 5-hydroxylated metabolites displayed a clear, congener-specific enantiomeric enrichment. Overall, this study demonstrates for the first time that chiral PCBs, such as PCB 91, 95, 132, and 149, are enantioselectively metabolized to OH-PCBs by cytochrome P450 enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据