4.8 Article

Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 20, 页码 7783-7789

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es9036308

关键词

-

资金

  1. China Scholarship Council (CSC)
  2. United States Department of Energy (DOE)'s Joint EPA, NSF, and DOE

向作者/读者索取更多资源

This study investigated the influences of pH, bicarbonate, and calcium on U(VI) removal and reduction by synthetic nanoscale zerovalent iron (nanoFe(0)) particles under anoxic conditions. The results showed that the rates of MO removal and reduction by nanoFe(0) varied significantly with pH and concentrations of bicarbonate and/or calcium. For instance, at pH 6.92 the pseudo-first-order rate constants of U(VI) removal decreased by 78.5% and 81.3%, and U(VI) reduction decreased by 90.3% and 89.3%, when bicarbonate and calcium concentrations were increased from 0 to 1 mM, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of UO2 and iron (hydr)oxides as a result of the redox interactions between U(VI) and nanoFe(0). The study demonstrated the potential of using nanoFe(0) for U(VI)-contaminated site remediation and highlighted the impacts of pH, bicarbonate, and calcium on the U(VI) removal and reduction processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据