4.8 Article

Tissue-Specific In Vivo Bioconcentration of Pharmaceuticals in Rainbow Trout (Oncorhynchus mykiss) Using Space-Resolved Solid-Phase Microextraction

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 9, 页码 3417-3422

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es903064t

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Water Network
  3. Canada Research Chairs Program

向作者/读者索取更多资源

The space-resolved solid-phase microextraction (SR-SPME) technique was employed to study the tissue-specific bioconcentration of pharmaceuticals in live fish. The segmented design of the SPME fibers allowed for the simultaneous determination of pharmaceutical residues in fish dorsal-epaxial muscle and adipose tissue with a single SPME fiber. The miniaturized fiber endowed the technique with high spatial resolution allowing for quantification of analytes within adjacent, relatively small tissues of immature rainbow trout The pre-equilibrium sampling and kinetic calibration approach yielded efficient and accurate quantitation of pharmaceuticals in fish tissue, The ability of the SPME method to repeatedly sample the same fish circumvents problems arising from interanimal variation, thus improving the precision of generated bioconcentration kinetic profiles. In vivo monitoring with SR-SPME was validated with in vitro liquid extraction of tissue samples using methanol. Of the nine compounds evaluated, five (atrazine, gemfibrozil, carbamazepine, ibuprofen, and fluoxetine) bioconcentrated in adipose and muscle tissue over the eight exposure days. Although the accumulation of analytes in both tissues was positively correlated, each compound partitioned with differing affinities as modified by their hydrophobicity and unique molecular structure. Water samples analyzed using the SPME technique yielded results similar to those determined by solid-phase extraction (SPE); however, SPME was more rapid and operationally much simpler. This study illustrates the application conditions for in situ SR-SPME while demonstrating the potential of these miniaturized SPME fibers for simultaneous in vivo repeated sampling of multiple tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据