4.8 Article

Waste Activated Sludge Fermentation for Hydrogen Production Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: The Role of Fermentation pH

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 9, 页码 3317-3323

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es902958c

关键词

-

资金

  1. Foundation of State Key Laboratory of Pollution Control and Resource Reuse [PCRRK09002]
  2. NUT [060373]

向作者/读者索取更多资源

In this study an efficient strategy, i.e., controlling the fermentation pH at constant pH 10, for significantly increasing hydrogen yield from waste activated sludge (WAS) via the improvement of anaerobic process (sludge solubilization, hydrolysis, and acidification) and inhibition of hydrogen consumption by acetobacteria was reported. Without addition of pure hydrogen producer and nutrient source, the effect of different constant pH in the range of pH 4-11 on hydrogen production from WAS was compared with that of different initial pH. The maximal hydrogen yield was observed respectively at constant pH 10 and initial pH 10, but the former was 47.8% higher than the latter (26.9 versus 18.2 mL per gram volatile suspended solids) and much greater than that reported in literature. Then, the mechanisms for constant pH 10 resulting in remarkably higher hydrogen production than initial pH 10 were investigated. It was observed that constant pH 10 fermentation showed much higher solubilization of sludge main particulate organic matters, hydrolysis of solubilized organic materials and acidification of hydrolyzed products, which were of benefit to the hydrogen production. Also, there was more acetic but less propionic acid in the constant pH 10 test, which was in correspondence with the theory of fermentation type affecting hydrogen production. Moreover, in the reactor of initial pH 10 the produced hydrogen was readily converted to acetic acid, but no obvious hydrogen consumption was observed in constant pH 10 reactor. Further investigation of microorganisms with enzymes analysis and fluorescence in situ hybridization (FISH) indicated that the activity and growth of acetobacteria in the reactor of constant pH 10 was much lower than those in initial pH 10 reactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据