4.8 Article

Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: US EPA's Four Lab Study

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 19, 页码 7184-7192

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es9039314

关键词

-

资金

  1. U.S. EPA

向作者/读者索取更多资源

The U.S. Environmental Protection Agency's Four Lab Study involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological effects of complex disinfection byproduct (DBP) mixtures, with an emphasis on reproductive and developmental effects that have been associated with DBP exposures in some human epidemiologic studies. This paper describes a new procedure for producing chlorinated drinking water concentrate for animal toxicology experiments, comprehensive identification of >100 DBPs, and quantification of 75 priority and regulated DBPs. In the research reported herein, complex mixtures of DBPs were produced by concentrating a natural source water with reverse osmosis membranes, followed by addition of bromide and treatment with chlorine. By concentrating natural organic matter in the source water first and disinfecting with chlorine afterward, DBPs (including volatiles and semivolatiles) were formed and maintained in a water matrix suitable for animal studies. DBP levels in the chlorinated concentrate compared well to those from EPA's Information Collection Rule (ICR) and a nationwide study of priority unregulated DBPs when normalized by total organic carbon (TOC). DBPs were relatively stable over the course of the animal studies (125 days) with multiple chlorination events (every 5-14 days), and a significant portion of total organic halogen was accounted for through a comprehensive identification approach. DBPs quantified included regulated DBPs, priority unregulated DBPs, and additional DBPs targeted by the ICR. Many DBPs are reported for the first time, including previously undetected and unreported haloacids and haloamides. The new concentration procedure not only produced a concentrated drinking water suitable for animal experiments, but also provided a greater TOC concentration factor (136x), enhancing the detection of trace DBPs that are often below detection using conventional approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据