4.8 Article

Development of a Trajectory Model for Predicting Attachment of Submicrometer Particles in Porous Media: Stabilized NZVI as a Case Study

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 23, 页码 8996-9002

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es102191b

关键词

-

资金

  1. National Science Council (NSC), Taiwan, ROC [NSC 97-2221-E-002-068-MY2]

向作者/读者索取更多资源

A new trajectory simulation algorithm was developed to describe the efficiency of a single collector (pore) to catch submicrometer particles moving through saturated porous media. A constricted-tube model incorporating the deterministic (interception, hydrodynamic retardation, van der Waals force and gravitational sedimentation), stochastic (Brownian diffusion), and thermodynamic (electrostatic and steric repulsion force) mechanisms was established tc predict the transport and deposition of surface modified nanoscale zerovalent iron (NZVI) particles by applying Lagrangian trajectory analytical approach. The simulation results show good agreement with the results predicted by existing energy-barrier-free models except for the particle size less than 100 nm at low approach velocity. The number of realizations per start location could be decreased down to 100 with the simulations still exhibiting acceptable relative standard deviation for engineering purposes. With the consideration of energy barriers, the model successfully describes the breakthrough curve of polymer-modified NZVI in a benchtop soil column as well. The novel simulation scheme can be a useful tool for predicting the behavior of the nanoscale colloidal particles moving through filter beds or saturated soil columns under conditions with repulsion and attraction forces among surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据