4.8 Article

Adsorption of hydroxyl- and amino-substituted aromatics to carbon manotubes

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 42, 期 18, 页码 6862-6868

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es8013612

关键词

-

资金

  1. National Science Foundation of China [20637030, 20577024]
  2. Ministry of Education of China [20060055035]
  3. Tianjin Municipal Science and Technology Commission [06TXTJJC14000]
  4. China-U.S. Center for Environmental Remediation and Sustainable Development

向作者/读者索取更多资源

The combined effects of hydroxyl/amino functional groups of aromatics and surface O-containing groups of carbon nanotubes on adsorption were evaluated. When normalized for hydrophobicity, 2,4-dichlorophenol and 2-naphthol exhibited a greater adsorptive affinity to carbon nanotubes and graphite (a model adsorbent without the surface 0 functionality) than structurally similar 1,3-dichlorobenzene and naphthalene, respectively, and 1-naphthylamine exhibited a much greater adsorptive affinity than all other compounds. Results of the pH-dependency experiments further indicated that the hydroxyl/amino functional groups of the adsorbates and the surface properties of the adsorbents played a combinational role in determining the significance of the nonhydrophobic adsorptive interactions. We propose that the strong adsorptive interaction between hydroxyl-substituted aromatics and carbon nanotubes/graphite was mainly due to the electron-donating effect of the hydroxyl group, which caused a strong electron-donor-acceptor (EDA) interaction between the adsorbates and the pi-electron-depleted regions on the graphene surfaces of carbon nanotubes or graphite. In addition to the EDA interaction, Lewis acid-base interaction was likely an extra important mechanism contributing to the strong adsorption of 1-naphthylamine, especially on the O-functionality-abundant carbon nanotubes. The findings of the present study might have significant implications for selective removal of environmental contaminants with carbon nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据